
Implementing an ADT
(reverse engineering a vector)

What’s a CS106B topic you want to improve on
after the midterm?

pollev.com/cs106poll

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

 arrays

 dynamic memory
 management

linked data structures

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

Today’s
question

How can we use
fundamental data storage
capabilities in C++ to
implement an ADT class?

Today’s
topics

1. Review

2. Designing OurVector

3. Visualizing OurVector
Operations

4. Implementing OurVector

Review
[arrays and dynamic memory management]

Memory from the Stack vs. Heap

Vector<string> varOnStack;

● So far, all variables we’ve created get
defined on the stack

● This is called static memory allocation

● Variables on the stack are stored
directly to the memory and access to
this memory is very fast

● We don’t have to worry about
memory management

string* arr = new string[numValues];

● We can now request memory from the
heap

● This is called dynamic memory allocation

● We have more control over variables on
the heap

● But this means that we also have to
handle the memory we’re using carefully
and properly clean it up when done

Acquiring and Using Storage Space

● Low-level storage space in C++ is acquired using dynamic memory
allocation.

● Dynamic memory allocation normally has three steps:
○ You can, at runtime, ask for extra storage space, which C++ will give to you.
○ You can use that storage space however you’d like.
○ You have to explicitly tell the language when you’re done using the memory.

int* tenInts = new int[10];

The OS will find a
contiguous array for
10 integers and give
you that memory
back

Credit: Neel Kishnani, Chris Gregg

https://docs.google.com/presentation/d/128i5NSGLWlrIsLhXw8NDfAvUYRsxeilxAnMnw_r2nvc/edit#slide=id.g125b2f8e9b8_0_217

❗❗Don’t access off the end of your array ❗❗

Even though
there’s available
space at 14 and
15, it’s not yours,
so you shouldn’t
access it 󰡾 ⚠ ⚠

int* tenInts = new int[10];

tenInts[10] // DON'T!!

Credit: Neel Kishnani, Chris Gregg

https://docs.google.com/presentation/d/128i5NSGLWlrIsLhXw8NDfAvUYRsxeilxAnMnw_r2nvc/edit#slide=id.g125b2f8e9b8_0_217

Arrays

● Storage space on computers, which we often refer to as memory, is allocated
in organized chunks called arrays

● An array is a contiguous chunk of space in the computer's memory, split into
slots, each of which can contain one piece of information

○ Contiguous means that each slot is located directly next to the others. There are no "gaps."
○ All arrays have a specific type. Their type dictates what information can be held in each slot.
○ Each slot has an "index" by which we can refer to it.

0 1 2 3 4 5 6Index:

We need arrays on heap memory when designing collection classes so that…
(1) we have persistent storage over the lifetime of each class instance; available across methods

(2) We can generate storage when we need it (in the constructor)

dynamic memory
allocation

arrays
(that we access
with a pointer)

🤝

Dynamically Allocating Arrays

● First, declare a variable that will point at the newly-allocated array. If
the array elements have type T, the pointer will have type T*.
○ e.g. int*, string*, Vector<double>*

● Then, create a new array with the new keyword and assign the
pointer to point to it.

● In two separate steps:
T* arr;
arr = new T[size];

● Or, in the same line:
T* arr = new T[size];

Pointers

● A pointer is a brand new data type that becomes very prominent when
working with dynamically allocated memory.

● Just like all other data types, pointers take up space in memory and can store
specific values.

● The meaning of these values is what's important. A pointer always stores a
memory address, which is like the specific coordinates of where a piece of
memory exists on the computer.

● Thus, they quite literally "point" to another location on your computer.

Properties of Dynamically Allocating Arrays

● The array you get from new[] is fixed-size: it can neither grow nor
shrink once it’s created.
○ The programmer’s version of “conservation of mass.”

● The array you get from new[] has no bounds-checking. Walking off
the beginning or end of an array triggers undefined behavior.
○ Literally anything can happen: you read back garbage, you crash your program, you

let a hacker take over your computer, etc…

● The array you get from the new[] keyword comes from an area of
memory called the heap.

Final Takeaways

● You can create arrays of a fixed size at runtime by using new[].

● C++ arrays don’t know their lengths and have no bounds-checking. With great
power comes great responsibility.

● You are responsible for freeing any memory you explicitly allocate by calling
delete[]. Otherwise, your program will have memory leaks.

● Once you’ve deleted the memory pointed at by a pointer, you have a dangling
pointer and shouldn’t read or write from it.

How can we use fundamental
data storage capabilities in C++

to implement an ADT class?

Arrays vs. Vectors

● Notice that we access the elements of an array just like we access them in a
Vector, with square brackets.

● BUT arrays are not objects – they don't have any functions associated with
them.

● So, you can't do this:

int* firstTen = new int[10];
int len = firstTen.length(); // ERROR! No functions!
firstTen.add(42); // ERROR! No functions!
firstTen[10] = 42; // ERROR! Buffer overflow!

Arrays vs. Vectors

● Arrays are a very necessary tool to use if we want to actually store
information in a structured way in a program.

● Vectors are a great abstraction, providing helpful methods and a clean
interface that other programmers can use to solve interesting
problems.

● Idea: Let's use a dynamically allocated array as the underlying method
of data storage for a Vector class. Best of both worlds!

arrays

Designing OurVector

What is OurVector?

● Goal: Let's make our very own version of the Stanford C++ Vector that
we've been using all quarter long.

○ It all will feel so much cooler when we've built it ourselves!

What is OurVector?

● Goal: Let's make our very own version of the Stanford C++ Vector that
we've been using all quarter long.

○ It all will feel so much cooler when we've built it ourselves!

● Scope Constraints (aka "You've Gotta Start Somewhere"):

What is OurVector?

● Goal: Let's make our very own version of the Stanford C++ Vector that
we've been using all quarter long.

○ It all will feel so much cooler when we've built it ourselves!

● Scope Constraints (aka "You've Gotta Start Somewhere"):
○ We will only implement a subset of the functionality that the Stanford Vector provides.

What is OurVector?

● Goal: Let's make our very own version of the Stanford C++ Vector that
we've been using all quarter long.

○ It all will feel so much cooler when we've built it ourselves!

● Scope Constraints (aka "You've Gotta Start Somewhere"):
○ We will only implement a subset of the functionality that the Stanford Vector provides.
○ OurVector will only store integers and will not be configurable to store other types

■ Generic, or "templated" classes that allow the client to specify the data type that is
stored, are possible in C++, but they are beyond the scope of this class.

What is OurVector?

● Goal: Let's make our very own version of the Stanford C++ Vector that
we've been using all quarter long.

○ It all will feel so much cooler when we've built it ourselves!

● Scope Constraints (aka "You've Gotta Start Somewhere"):
○ We will only implement a subset of the functionality that the Stanford Vector provides.
○ OurVector will only store integers and will not be configurable to store other types

■ Generic, or "templated" classes that allow the client to specify the data type that is
stored, are possible in C++, but they are beyond the scope of this class.

○ At first, OurVector will be limited to storing a fixed number of elements, but we will lift
this restriction by the end of class. For now, if we run out space we'll just throw an error.

How do we design a class?
We must specify the 3 parts:

1. Member functions: What functions can you call on a variable of this
type?

2. Member variables: What subvariables make up this new variable type?

3. Constructor: What happens when you make a new instance of this
type?

How do we design OurVector?
We must answer the following three questions:

1. Member functions: What public interface should OurVector support?
What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurVector?

3. Constructor: How are the member variables initialized when a new
instance of OurVector is created?

How do we design OurVector?
We must answer the following three questions:

1. Member functions: What public interface should OurVector
support? What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurVector?

3. Constructor: How are the member variables initialized when a new
instance of OurVector is created?

OurVector Public Interface

class OurVector {
public:
 OurVector();

 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();

private:
 /* To be defined soon! */
};

OurVector Public Interface

class OurVector {
public:
 OurVector();

 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();

private:
 /* To be defined soon! */
};

These methods should all look
very familiar – we've been
using them all quarter long!

OurVector Public Interface

class OurVector {
public:
 OurVector();

 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();

private:
 /* To be defined soon! */
};

We'll use the get method to
emulate the functionality of
the [] operator.

OurVector Public Interface

class OurVector {
public:
 OurVector();

 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();

private:
 /* To be defined soon! */
};

What should go
here?

How do we design OurVector?
We must answer the following three questions:

1. Member functions: What public interface should OurVector support?
What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurVector?

3. Constructor: How are the member variables initialized when a new
instance of OurVector is created?

OurVector Member Variables

OurVector Member Variables

● int* elements;
○ A pointer to an array of integers, which will act as our underlying data storage

mechanism.

OurVector Member Variables

● int* elements;
○ A pointer to an array of integers, which will act as our underlying data storage

mechanism.

● int allocatedCapacity;
○ An integer that stores the size of the allocated elements array. Remember,

arrays don't have any conception/knowledge of their own size, so we must
manually track this!

OurVector Member Variables

● int* elements;
○ A pointer to an array of integers, which will act as our underlying data storage

mechanism.

● int allocatedCapacity;
○ An integer that stores the size of the allocated elements array. Remember,

arrays don't have any conception/knowledge of their own size, so we must
manually track this!

● int numItems;
○ An integer that stores the number of elements currently stored in the vector.

OurVector Header File
class OurVector {
public:
 OurVector();

 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();
private:
 int* elements;
 int allocatedCapacity;
 int numItems;
};

How do we design OurVector?
We must answer the following three questions:

1. Member functions: What public interface should OurVector support?
What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in OurVector?

3. Constructor: How are the member variables initialized when a new
instance of OurVector is created?

Review: Constructors

● A constructor is a special member
function used to set up the class
before it is used.

● The constructor is automatically
called when the object is created.

● The constructor for a class named
ClassName has signature
ClassName(args);

class OurVector {
public:
 OurVector();

 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();
private:
 int* elements;
 int allocatedCapacity;
 int numItems;
};

OurVector Constructor

● The constructor must initialize all the values of our member variables to be
things that initially make sense

● The allocatedCapacity should be set to some small integer

● The elements array should be allocated using the new[] keyword

● The numItems counter should be initialized to 0

OurVector Constructor

● The constructor must initialize all the values of our member variables to be
things that initially make sense

● The allocatedCapacity should be set to some small integer

● The elements array should be allocated using the new[] keyword

● The numItems counter should be initialized to 0
When does this
memory ever get
deallocated?

Destructors

● A destructor is a special member
function responsible for cleaning
up an object's memory.

● It’s automatically called whenever
an object’s lifetime ends (for
example, if it’s a local variable that
goes out of scope).

● The destructor for a class named
ClassName has signature
~ClassName();

Destructors

● A destructor is a special member
function responsible for cleaning
up an object's memory.

● It’s automatically called whenever
an object’s lifetime ends (for
example, if it’s a local variable that
goes out of scope).

● The destructor for a class named
ClassName has signature
~ClassName();

class OurVector {
public:
 OurVector();

 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();
private:
 int* elements;
 int allocatedCapacity;
 int numItems;
};

Destructors

● A destructor is a special member
function responsible for cleaning
up an object's memory.

● It’s automatically called whenever
an object’s lifetime ends (for
example, if it’s a local variable that
goes out of scope).

● The destructor for a class named
ClassName has signature
~ClassName();

class OurVector {
public:
 OurVector();

~OurVector();
 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();
private:
 int* elements;
 int allocatedCapacity;
 int numItems;
};

OurVector Destructor

● The destructor must take responsibility for freeing any allocated
memory currently in use by an instance of the class.

● In particular, this means calling the delete[] operator on the
elements array to officially give that memory back to the computer and
avoid any memory leaks.

● The other member variables (allocatedCapacity and numItems)
are both simple stack-allocated variables, so nothing special is needed
to clean them up.

Let's Code It! (Part 1)
Member Variables, Constructor, and Destructor

Summary

● Member variables define the key data storage components of a class
implementation.

● The constructor is the special method that gets called when a new instance of
a class is declared. In this method, we initialize all of our member variables to
the appropriate values, including allocating any necessary memory.

● The destructor is a special method that gets called when an instance of a class
goes out of scope and thus is destroyed. In this method, we most often are
responsible for freeing any dynamically allocated memory used by the
instance.

Announcements

Announcements

● Midterm feedback/grades and solutions were released on Monday 11:55 PM.
Please see our post on Ed for all the information.

● Assignment 3 is due tonight at 11:59pm PDT. Assignment 4 will be released
by the end of the day today and will be due next Tuesday.

● Your project proposal is due this Sunday so get started soon.

Final Project

For your capstone final project, you will:

● Pick a topic from this quarter that targets a potential area of growth and write
your own problem on that topic (scoped for a section/diagnostic/exam). Write a
project proposal explaining your project idea. Due Sunday, July 24.

● Write a project report that includes a problem description, multiple possible
solutions, and a capstone ethics reflection. Due Sunday, August 7.

● Take on the role of a section leader and teach/present the problem to your
section leader in a 30-minute, 1-on-1 session. Takes place from August 11-14.

Visualizing OurVector
Operations

Initialization

Initialization via the Constructor

Initialization via the Constructor

// client code

OurVector vec;

Initialization via the Constructor

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

0

// client code

OurVector vec;

Initialization via the Constructor

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

0

// client code

OurVector vec;

Newly allocated arrays
initially store random
(or garbage) values

Adding Elements

The add() operation

● The add() operation is responsible for taking a specified element and
adding it to the first open spot at the end of the vector.

The add() operation

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

0

// client code

OurVector vec;

The add() operation

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

0

// client code

OurVector vec;
vec.add(106);

The add() operation

106 ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

1

// client code

OurVector vec;
vec.add(106);

The add() operation

106 ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

1

// client code

OurVector vec;
vec.add(106);
vec.add(42);

The add() operation

106 42 ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

2

// client code

OurVector vec;
vec.add(106);
vec.add(42);

The add() operation

106 42 ? ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

2

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);

The add() operation

106 42 -3 ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);

The add() operation

106 42 -3 ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

The add() operation

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

Removing Elements

The remove() operation

● The remove() operation allows the client to specify an index at which
to remove an element, and then removes the value at that index.

The remove() operation

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

The remove() operation

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 27 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 27 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The remove() operation

106 -3 27 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

Arrays cannot grow or shrink, so this older
value is still technically there in the array.
We're just going to pretend that it isn't!

The remove() operation

106 -3 27 ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

Arrays cannot grow or shrink, so this older
value is still technically there in the array.
We're just going to pretend that it isn't!

Inserting Elements

The insert() operation

● The insert() operation is similar to add(), but allows the client to
specify which index they want the value to be inserted at.

The insert() operation

106 -3 27 ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);

The insert() operation

106 -3 27 ? ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

3

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

The insert() operation

198 106 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

Assorted Operations

The get() / size() / isEmpty() operations

● The remaining operations that we have left to implement should be relatively
straightforward, given the member variables we have.
○ int* elements
○ int allocatedCapacity
○ int numItems

● The get() method should return the array element at the specified index.
● The size() method should return the number of items the array currently

holds (not the total allocated capacity).
● The isEmpty() method return true if number of items is > 0.

Attendance ticket:
https://tinyurl.com/stanfordvector

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/stanfordvector

The get() / size() / isEmpty() operations

● The remaining operations that we have left to implement should be relatively
straightforward, given the member variables we have.

● The get() method can just return the array element at the specified index.

● The size() method can just return the value of the numItems member
variable.

● The isEmpty() method can compare numItems to 0 and return the
appropriate result.

Implementing OurVector

Let's Code It! (Part 2)
add(), remove(), insert(), get(), size(),
isEmpty()

Summary

● Using an array as a backing store of data involves shifting elements around
– this kind of code is ripe for off-by-one errors!

● With good member variable member choices, most public methods are
relatively straightforward to implements.

● We've now gained an appreciation for why insertion/removal on Vectors is an
"expensive" O(n) operation.

Running Out of Space

● Our current implementation very quickly runs out of space to store
elements.

● What should we do when this happens?
○ Currently, we just throw an error. That doesn't seem quite right.

What if all data structures we used were limited to hold only 8
items?

○ Instead, we need a way to dynamically resize (grow) our internal
data storage mechanism.

Dynamic Array Growth

A Day in the Life of a Hermit Crab

● Hermit crabs are interesting animals. They live in scavenged shells that they
find on the seafloor. Once in a shell, this is their lifestyle (with a bit of poetic
license):

A Day in the Life of a Hermit Crab

● Hermit crabs are interesting animals. They live in scavenged shells that they
find on the seafloor. Once in a shell, this is their lifestyle (with a bit of poetic
license):

○ Grow until they have outgrown their current shell. Then, follow these 5 steps.
■ Find another, larger shell.
■ Move all their stuff into the new shell.
■ Leave the old shell on the seafloor.
■ Update their address with the Hermit Crab Postal Service.
■ Make note of their new shell's spacious capacity by posting on Hermit Crab Instagram.

A Day in the Life of a Hermit Crab

● Hermit crabs are interesting animals. They live in scavenged shells that they
find on the seafloor. Once in a shell, this is their lifestyle (with a bit of poetic
license):

○ Grow until they have outgrown their current shell. Then, follow these 5 steps.
■ Find another, larger shell.
■ Move all their stuff into the new shell.
■ Leave the old shell on the seafloor.
■ Update their address with the Hermit Crab Postal Service.
■ Make note of their new shell's spacious capacity by posting on Hermit Crab Instagram.

● While this is purposefully a bit of a silly analogy, this process models almost
exactly what we need to do in order to dynamically resize our internal data
storage mechanism.

A Day in the Life of a Growable Array

● In essence, when we run out of space in our array, we want to allocate a new
array that is bigger than our old array so we can store the new data and keep
growing. These "growable arrays" follow a five-step expansion that mirrors the
hermit crab model (with poetic license).

A Day in the Life of a Growable Array

● In essence, when we run out of space in our array, we want to allocate a new
array that is bigger than our old array so we can store the new data and keep
growing. These "growable arrays" follow a five-step expansion that mirrors the
hermit crab model (with poetic license).
○ Grow the array until we run out of space (how can we tell if we've run out of

space?)
■ Create a new, larger array. Usually we choose to double the current size.
■ Copy the old array elements to the new array.
■ Delete (free) the old array.
■ Point the old array variable to the new array.
■ Update the associated capacity variable for the array.

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

delete[]

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

Dynamic
Deallocation!

delete[]

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.
4. Point the old array variable to the new

array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0xabcd5678

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.
4. Point the old array variable to the new

array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0xabcd5678

4

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.
4. Point the old array variable to the new

array.
5. Update the associated capacity variable

for the array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0xabcd5678

8

4

1. Create a new, larger array. Usually we
choose to double the current size.

2. Copy the old array elements to the new
array.

3. Delete (free) the old array.
4. Point the old array variable to the new

array.
5. Update the associated capacity variable

for the array.

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

Let's Code It! (Part 3)
expand() private helper function

Summary

Implementing ADT Classes

● The first step of implementing an ADT class (as with any class) is answering the
three important questions regarding its public interface, private member
variables, and initialization procedures.

● Most ADT classes will need to store their data in an underlying array. The
organizational patterns of data in that array may vary, so it is important to
illustrate and visualize the contents and any operations that may be done.

● The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Priority Queues and Heaps

